
Abstract

Previous studies have shown that over-expression of
α-Synuclein (α-Syn), a protein whose abnormality is im-
plicated in the pathogenesis of Parkinson’s disease (PD),
reduces tyrosine hydroxylase (TH) expression and
dopamine synthesis. To explore the possible mechanism
for the regulation of TH expression by α-Syn, luciferase
reporter gene carrying a -493/+27bp fragment of human
TH gene (pGL3-TH520) and pcDNA carrying hα-Syn
gene (pcDNA-hα-Syn) were co-transfected into T293
cells. The results showed that α-Syn was only detected in
pcDNA-hα-Syn-transfected cells but not in pcDNA vector
control cells. In α-Syn-transfected cells, the luciferase
 activity was dramatically reduced compared with the
 vector control cells. These results suggest that α-Syn may
function as a negative regulator for TH expression by
 affecting the activity of TH promoter.
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Introduction

α-Synuclein (α-Syn) is a 140-amino acid protein
richly expressed in the brain(George, 2002; Ma et
al., 2003). Several evidences suggest that α-Syn is
implicated in the pathogenesis of Parkinson’s disease
(Pd). For example, mutations in the α-Syn gene
(a30P, a53T, and e46K) are associated with auto-
somal dominant early-onset forms of Pd (Krüger et
al., 1998; Polymeropoulos et al., 1997; Zarranz et
al., 2004). Multiple copies of wild-type α-Syn are
identified in some families with this disease
 (Singleton et al., 2003; Chartier-Harlin et al., 2004;
ibáñez et al., 2004). Fibrillated α-Syn is shown to
be the major component of Lewy bodies and Lewy-
related neurites in both sporadic and familial Pd
(arima et al., 1998; Baba et al., 1998; Spillantini et
al., 1997). α-Syn involved in Pd pathogenesis was

supported by studies in α-Syn transgenic animals
and gene-transfected cells (Perez， et al., 2002;
 abeliovich et al., 2000; Lotharius and Brundin,
2002; Perez et al., 2004; Rochet et al., 2004). These
studies showed that over-expression of α-Syn caused
preferential damage of dopaminergic (da) neurons
in the brain. in what manner abnormally expressed
α-Syn may selectively damage the da neurons
 remains yet unknown.

Since dopamine neurotransmitters and tyrosine
hydroxylase (TH) is the rate-limiting enzyme for da
synthesis (Nagatsu et al., 1964; Zigmond et al.,
1989), we hypothesize that some relationship may
exist between α-Syn and TH, which may play an im-
portant role in the selective damage of da neurons
caused by abnormal α-Syn expression. The previous
studies showed that the expression of TH was nega-
tively regulated by α-Syn(Yu et al., 2004; Perez,
2002; Tehranian et al., 2006). However, the exact
molecular mechanism underlying this regulation has
been unclear. it is known that gene regulation often
occurs in the promoter regions, whether α-Syn
 regulate TH is also through regulation of promoter
activity. To demonstrate this, we constructed a
 luciferase reporter gene containing -493/+27 region
of TH gene, and transfected the reporter gene with
α-Syn gene into T293 cells simultaneously. our
 results demonstrated that the TH promoter activity
was significantly reduced in the α-Syn-transfected
T293 cells. 

Materials and Methods

PLaSMid CoNSTRuCTioN

Genomic dNa was isolated from a healthy
human adult. Briefly, 10 ml of blood was anticoag-
ulated with 1.0 mmol/L edTa-Na2. The erythrocytes
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were lysed in a buffer containing 10 mmol/L Tris-
HCl (pH 7.5), 0.32 mol/L sucrose, five mmol/L
MgCl2 and 1% (V/V) Triton X-100. The leukocytes
were isolated by centrifugation (16,000 g, 30 s) and
lysed in a buffer containing 10 mmol/L Tris-HCl (pH
8.3), 50 mmol/L KCl, 25 mmol/L MgCl2, 0.1 mg/mL
gelatin, 0.45% (V/V) Nonidet P40 and 0.45% (V/V)
Tween 20. The lysate was incubated with 20 mg of
SdS and 1mg of protease K at 55°C overnight. The
genomic dNa was isolated and purified with
ethanol precipitation.

TH gene promoter region was amplified by PCR
method using the following primers: upstream
primer 5´-CaGaTGGCaCTCCTaGGaaCCaC-
3´, downstream primer 5´-gaagatctTCa
 GTGTGGaGGTCCGGGCT-3´, which were
 designed according to the human TH promoter
 sequence (M23597, GenBank) (Chu and Kordower,
2007). a 5´-gaagatct-3´ sequence containing
 restriction endonuclease Bglii site, was subjoined to
5´-flanking of the downstream primer. TH gene
 promoter region was amplified by PCR method
using the following primers: upstream primer
5´-CaGaTGGCaCTCCTaGGaaCCaC-3´,
downstream primer 5´-gaagatctTCa GTGTGGaG-
GTCCGGGCT-3´, which were designed according
to the human TH promoter sequence (GenBank
no:M23597) (Chu and Kordower, 2007). a
5´-gaagatct-3´ sequence containing restriction
 endonuclease Bglii site, was subjoined to 5´-flank-
ing of the downstream primer. The PCR products
were purified and inserted to the pMd 18-T vector
(TaKaRa, Japan) to generate the recombinant
 plasmid pMd, which was digested by Sma i and Bgl
Ⅱto release an approximately 500 bp dNa fragment
to subclone into pGL3-Basic luciferase vector
(promega, uSa) to produce the resultant vector
pGL3-TH520. all  vectors were identified by
 sequencing.

CeLL TRaNSFeCTioN

Human embryonic kidney (HeK) 293T cells were
grown in dMeM (GiBCo) supplemented with
100 u/ml of penicillin, 100 u/ml streptomycin and
10% heat-inactivated FBS under 5% Co2/95% air in
a humidified incubator. Cells were kept at exponen-
tial phase of growth. The culture medium for 293T
cells with hα-Syn transfectants was similar to that
of 293T control cells except containing 200 µg/ml
of G418 (Sigma).

Cells were transfected using Lipofectamine 2000
reagent according to the protocol. Briefly, the cells
were seeded in 96-well plates at the density of
1×104 cells/100 µl/well, and cultured for 24 h. each

of the plasmids (pGL3, pcdNa, peGFP) in the
Lipofectamine 2000 (w/v, 1:4) was added, the plas-
mid phRL-TK (promega, uSa) was co-transfected
(w/w, phRL/pGL3 or pcdNa, 1:25) to the cells was
used as internal control. Five hours later, the cells
were changed with fresh medium, and cultured for
 additional 24 h continually. The luciferase activities
were then measured in a GLoMaXTM Microplate
Luminometer using dual-Luciferase Reporter assay
System kit (promega, uSa). 

For immunofluorescence labeling, 293T cells
were maintained in 35cm2 culture dishes at a density
of 2 × 105 cells/ml. 2.5 µg of each dNa construct
was transfected into the cells by Lipofectamine 2000
reagent as describes above. 24 h after transfection,
the cells were fixed in 4% paraformaldehyde
 containing 0.1% glutaraldehyde and 0.3% Triton
X-100. The cells were then incubated overnight at
4 °C with anti-human α-Syn monoclonal antibody
(3d5, 1:3,000) (Yu et al., 2007), followed by 1 h in-
cubation with the FiTC-conjugated goat anti-mouse
igG (1:200, Santa cruz) at room temperature. after
 several washes with PBS, the cells were cover-
slipped and observed with a confocal laser micro-
scope  (Bio-Rad, MRC, 1024, uSa).

WeSTeRN BLoT

For Western blot analysis, 293T cells were main-
tained in 25 cm2 flasks at a density of 7 ×
104 cells/ml. 20 µg of each dNa construct was trans-
fected into the cells by Lipofectamine 2000 reagent
as describes above. after transient transfection for
24 h, the cells were collected and lysed with a lysis
buffer containing 10 mM Tris-HCl (pH 7.4), 10 mM
NaCl, 1 mM PMSF, 1 mM edTa and 0.01% (w/v)
SdS. The cell lysates were then centrifuged at
12,000 × g for 20 min and the protein concentration
in the supernatant was determined using BCa
method (pierce). Proteins (60 µg /lane) were sepa-
rated by 12.5% SdS-PaGe and transferred to PVdF
membrane (Life Science). The membrane was
blocked for 30 min with 5% skim milk in TBS con-
taining 0.1% Tween-20 (TBST), and then incubated
with anti-human α-Syn monoclonal antibody (3d5,
1:5,000), or anti-β-tubulin monoclonal antibody
(1:20,000, sigma) overnight at 4℃, followed by
horseradish peroxidase-conjugated goat anti-mouse
igG (1:5000, Santa Cruz) for 1 h, and developed
with eCL reagents (Santa Cruz). 

STaTiSTiCaL aNaLYSiS

data were analyzed by one-factor analysis of
 variance, and independent-sample T Test by SPSS
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11.5 statistical software. data were expressed as
mean ± SeM, representing the average value over 6
independently repeated experiments.

Results

using human genomic dNa as a template, we
amplified an approximately 500 bp dNa fragment
by PCR, and inserted the dNa fragment into the
promoter site of pGL3-Basic reporter plasmid vec-
tor. The sequence of the inserted dNa was identified
and showed in Fig. 1. 

To determine the receptivity of 293T cells for
 extrinsic dNa, plasmid peGFP-C1 (Clontech) was
used to evaluate the transfection efficiency of 293T
cells. around 70% of the cells were shown to be pos-
itive for GFP (data not shown). With this transfection
efficiency, the construct containing -493/+27 bp re-
gion of the human TH promoter (plasmid pGL3-
TH520) was transiently transfected into 293T cells.
at the same time, the pGL3-Basic (promoterless lu-
ciferase reporter vector) and the pGL3-control (lu-
ciferase reporter vector containing the SV40
promoter and SV40 enhancer) were used as negative
or positive control, respectively. pGL3-TH520 could

express luciferase in 293T cells, approximately 68-
fold higher than the pGL3-Basic (Fig. 2).

We determined the expression of α-Syn by anti-
α-Syn monoclonal antibody 3d5, which was well
characterized before (Yu et al., 2007). immunofluo-
rescence labeling illustrated that the signal for α-Syn
in the hα-Syn-transfected cells was higher than those
in the vector control cells (Fig. 3a). Western blot
analysis showed that the cells having the α-Syn-con-
struct expressed distinct protein levels of α-Syn.
However, no signals of α-Syn were detected in the
samples derived from the non-transfected cells and
the vector control cells (Fig. 3B).

We assayed the functional alteration of human TH
gene -493/+27 region in different 293T cells. as
shown in Fig. 3C, the dual luciferase activity of the
pGL3-TH520 in the 293T/pcdNa (6.73 ± 0.26) was
significantly higher than that in the 293T/pcdNa-
hα-syn (4.54 ± 0.26), p < 0.01 .

Discussion

in the present study, we isolated a human TH gene
fragment, which had 520 bp, containing the first
-493 bp of the promoter immediately upstream of the

FiG. 1. — Nucleotide sequence of the amplified 5´-flanking
region of the human TH gene. The transcription start site is des-
ignated +1. exon 1 extends from nucleotides +1 to +27. Putative
consensus sequences for transcription factors including bicoid-
type element (BBe), caMP response element (CRe), and
canonical TaTa box are boxed with their names indicated above.

FiG. 2. — Promoter assay of the amplified -493/+27 region of
the human TH gene. a: Schematic representation of the human
TH promoter reporter constructs. The amplified 5´-flanking
 regions were subcloned into a promoterless luciferase construct
(pGL3-Basic). B: Constructs were transiently co-transfected
with a synthetic Renilla luciferase reporter plasmid (phRL-TK)
into 293T cells. aliquots corresponding to identical Renilla
 luciferase activity were used for each luciferase assay.
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transcription start, and several basic elements of the
promoter, such as canonical TaTa box, caMP re-
sponse element (CRe), and consensus sequences for
transcription factors bicoid-type element (BBe)
(Kim et al., 2003). We inserted the fragment into
plasmid pGL3-Basic to construct a luciferase
 reporter vector pGL3-TH520. pGL3-TH520 vector
could express luciferase 68-folds higher than the
 promoterless luciferase reporter vector in the trans-

fected 293T cells, indicating that the human TH gene
-495/+27 fragment possesses the promoter function.

By co-transfecting the TH promoter and α-Syn
genes into 293T cells, we showed that the activity of
TH promoter was reduced in the cells transfected
with α-Syn gene but not in the control cells. Western
blot showed that α-Syn protein was detected only in
the cells transfected with α-Syn gene. These results
suggest that α-Syn may function as a negative regu-
lator of the TH promoter. 

We previously showed that in the α-Syn–trans-
fected MeS23.5 cells, increasing of α-Syn expres-
sion was accompanied by dramatic reduction of TH
mRNa. The present results indicate that the inhibi-
tion of TH gene expression by α-Syn may be due to
its action on the promoter activity of TH gene. it re-
mains unclear if α-Syn can directly bind to the pro-
moter region of TH gene to inhibit its activity, or
through an indirect mechanism to affect the activity
of TH promoter. 

α-Syn is normally localized in the nuclei of brain
neurons (Yu et al., 2007). The nuclear localization
suggests a physiological function of this protein in
the regulation of gene expression. The present results
could extend our knowledge about the possible func-
tion of α-Syn in the gene regulation in the nucleus.
in dopaminergic neurons, the regulation of TH pro-
moter activity by α-Syn may have specific mean-
ings. as described above, inhibition of TH promoter
activity will lead to the suppression of TH expres-
sion in dopaminergic neurons, which may be favor-
able in physiological conditions for these neurons to
protect themselves from the damage of oxidative
stress induced by self-oxidation of dopamine. in this
context, a physiological role of α-Syn is likely to
work as a regulator in dopaminergic neurons to
maintain a homeostasis of da metabolism, which al-
lows both normal functioning and self-protection of
these neurons. However, in pathological conditions,
such as in the case of Pd, the concentration of α-Syn
within the cells may be increased, leading to elevated
levels of nuclear α-Syn and decreased TH gene tran-
scription. To support this, a recent study on humans
and monkeys has shown that during aging the levels
of cytoplasmic α-Syn increase in dopaminergic neu-
rons, which correlates with a decline in TH expres-
sion (Chu and Kordower, 2007). However, no
apparent reduction in TH expression was found in
dopaminergic neurons in the ventral tegmental area
where the levels of cytoplasmic α-Syn did not in-
crease significantly. although the cytoplasmic α-Syn
level increases in the dopaminergic neurons during
normal aging, it may not reach to a sufficient mag-
nitude to drive da levels pass a threshold that would
develop the cardinal signs and symptoms of Pd. in

FiG. 3. — expression of α-Syn and luciferase in 293T cells.
a: after transfection with the indicated plasmids, the cells are
immunofluorescently labeled with anti-α-Syn antibody 3d5
(green). Scal bar = 100mm. B: the cells are lysed and Western
blots are performed with anti-β-tubulin antibody and anti-α-Syn
antibody 3d5, respectively. C: the cells are assayed with the
dual-luciferase reporter assay system. *p < 0.01.
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Pd, however, for reasons still unknown, the age-
 related accumulation of α-Syn becomes further
 intensified and misfolded to form inclusions. These
events may cause the cell to lose its dopaminergic
phenotype, and da levels may pass a critical thresh-
old, causing symptoms to emerge. 

Conclusion

The -493/+27 bp region of the human TH gene
has a promoter function. α-Syn may function as a
negative regulator for TH expression by affecting the
activity of this TH promoter as a trans-acting factor. 
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